Question 37
if $P=\left( \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ -1 & 0 & 1 \\\end{matrix} \right)$, then $\left| P \right|$ is
if $P=\left( \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ -1 & 0 & 1 \\\end{matrix} \right)$, then $\left| P \right|$ is
The inverse of the matrix $\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\\end{matrix} \right]$is
A matrix P has an inverse ${{P}^{-1}}=\left( \begin{matrix} 1 & -3 \\ 0 & 1 \\\end{matrix} \right)$find P
$\left| \begin{matrix} -x & 2 \\ 4x & 1 \\\end{matrix} \right|=\left| \begin{matrix} 3 & 3x \\ 4 & -5 \\\end{matrix} \right|$, find the value of x
If $N=\left( \begin{matrix} 3 & 5 & -4 \\ 6 & -3 & -5 \\ -2 & 2 & 1 \\\end{matrix} \right)$, find $\left| N \right|$
If $P=\left( \begin{matrix} 2 & 1 \\ -3 & 0 \\\end{matrix} \right)$ and I is a 2 × 2 unit matrix. Evaluate ${{p}^{2}}-2p+4I$
Evaluate $\left| \begin{matrix} -1 & -1 & -1 \\ 3 & 1 & -1 \\ 1 & 2 & 1 \\\end{matrix} \right|$
Given the matrix $k=\left( \begin{matrix} 2 & 1 \\ 3 & 4 \\\end{matrix} \right)$ the matrix k2 +k +1 is , where I is the 2× 2 identity matrix
If $P=\left( \begin{matrix} 3 & -2 & 4 \\ 5 & 0 & 6 \\ 7 & 5 & -1 \\\end{matrix} \right)$ then –2p is
Find the value of t for which the determinant of the matrix$\left( \begin{matrix} t-4 & 0 & 0 \\ -1 & t+1 & 1 \\ 3 & 4 & t-2 \\\end{matrix} \right)$is zero