Question 6
Rationalize $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
Rationalize $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
Rationalise$\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}$
Simplify $(\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2})$
Simplify $\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$
$\begin{align} & \text{Simplify }\frac{\sqrt{5}(\sqrt{147}-\sqrt{12})}{\sqrt{15}} \\ & \text{(A) 5 (B) }\tfrac{1}{5}\text{ (C) }\tfrac{1}{9}\text{ (D) }9 \\\end{align}$
Simplify ${{(\sqrt{6}+2)}^{2}}-{{(\sqrt{6}-2)}^{2}}$
Simplify $\left( \sqrt{2}+\frac{1}{\sqrt{3}} \right)\left( \sqrt{2}-\frac{1}{\sqrt{3}} \right)$
Rationalize $\frac{2-\sqrt{5}}{3-\sqrt{5}}$
Rationalize $\frac{2\sqrt{3}+\sqrt{5}}{\sqrt{5}-\sqrt{3}}$
Simplify $\frac{5+\sqrt{7}}{3+\sqrt{7}}$