Jambmaths question:
Simplify $\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$
Option A:
$3\sqrt{6}+7$
Option B:
$3\sqrt{6}-1$
Option C:
$3\sqrt{6}+1$
Option D:
$3\sqrt{6}-7$
Jamb Maths Solution:
$\begin{align} & \frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\ & \frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{8-\sqrt{6}-2\sqrt{6}+3}{2-3} \\ & \frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{5-3\sqrt{6}}{-1}=3\sqrt{6}-5 \\\end{align}$
Jamb Maths Topic:
Year of Exam: