If $\left( \begin{matrix} -2 & 1 \\ 2 & 3 \\\end{matrix} \right)\left( \begin{matrix} p & q \\ r & s \\\end{matrix} \right)=\left( \begin{matrix} 1 & 0 \\ 0 & 1 \\\end{matrix} \right),$what is the value of r
$-\frac{3}{8}$
$\frac{3}{8}$
$\frac{5}{8}$
$\frac{1}{4}$
$\begin{align} & A{{A}^{-1}}=I \\ & \text{Since }\left( \begin{matrix} -2 & 1 \\ 2 & 3 \\\end{matrix} \right)\left( \begin{matrix} p & q \\ r & s \\\end{matrix} \right)\text{gives}\left( \begin{matrix} 1 & 0 \\ 0 & 1 \\\end{matrix} \right)\text{ which is an } \\ & \text{identity matrix, it means that }\left( \begin{matrix} p & q \\ r & s \\\end{matrix} \right)\text{ is the inverse of}\left( \begin{matrix} -2 & 1 \\ 2 & 3 \\\end{matrix} \right) \\ & \text{For any given 2}\times \text{2 matrix, if }A=\left( \begin{matrix} a & b \\ c & d \\\end{matrix} \right),\text{ then }{{A}^{-1}}=\frac{1}{ad-bc}\left( \begin{matrix} d & -b \\ -c & a \\\end{matrix} \right) \\ & \text{Let }{{A}^{-1}}=\left( \begin{matrix} -2 & 1 \\ 2 & 3 \\\end{matrix} \right) \\ & {{A}^{-1}}=\frac{1}{(-2)(3)-(1)(2)}\left( \begin{matrix} 3 & -1 \\ -2 & -2 \\\end{matrix} \right) \\ & {{A}^{-1}}=-\frac{1}{8}\left( \begin{matrix} 3 & -1 \\ -2 & -2 \\\end{matrix} \right) \\ & {{A}^{-1}}=\left( \begin{matrix} -\tfrac{3}{8} & \tfrac{1}{8} \\ \tfrac{2}{8} & \tfrac{2}{8} \\\end{matrix} \right)=\left( \begin{matrix} -\tfrac{3}{8} & \tfrac{1}{8} \\ \tfrac{1}{4} & \tfrac{1}{4} \\\end{matrix} \right) \\ & \therefore r=\tfrac{1}{4} \\\end{align}$