Find the value of x and y respectively if $\left( \begin{matrix} 1 & 0 \\ -1 & -1 \\ 2 & 2 \\\end{matrix} \right)+\left( \begin{matrix} x & 1 \\ -1 & 0 \\ y & -2 \\\end{matrix} \right)=\left( \begin{matrix} -2 & 1 \\ -2 & -1 \\ -3 & 0 \\\end{matrix} \right)$
–3, –2
–5, –3
–2, –5
–3, –5
$\begin{align} & \left( \begin{matrix} 1 & 0 \\ -1 & -1 \\ 2 & 2 \\\end{matrix} \right)+\left( \begin{matrix} x & 1 \\ -1 & 0 \\ y & -2 \\\end{matrix} \right)=\left( \begin{matrix} -2 & 1 \\ -2 & -1 \\ -3 & 0 \\\end{matrix} \right) \\ & \left( \begin{matrix} 1+x & 0+1 \\ -1-1 & -1+0 \\ 2+y & 2-2 \\\end{matrix} \right)=\left( \begin{matrix} -2 & 1 \\ -2 & -1 \\ -3 & 0 \\\end{matrix} \right) \\ & \left( \begin{matrix} 1+x & 1 \\ -2 & -1 \\ 2+y & 0 \\\end{matrix} \right)=\left( \begin{matrix} -2 & 1 \\ -2 & -1 \\ -3 & 0 \\\end{matrix} \right) \\ & \text{comparing identities} \\ & 1+x=-2,\text{ }x=-3 \\ & 2+y=-3,\text{ }y=-5 \\ & (x,y)=(-3,-5) \\\end{align}$