Given that I3 is a unit matrix of order 3 find $\left| {{I}_{3}} \right|$
–1
0
1
2
$\begin{align} & \text{A unit matrix of order }3\times 3\text{ is represented }I=\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\\end{matrix} \right) \\ & \text{So the determinant is will be} \\ & \left| I \right|=\left| \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\\end{matrix} \right| \\ & \text{By mere looking at this }\left| I \right|=1 \\ & \text{But for the sake of proper understanding of the solution} \\ & \text{I will show the working} \\ & \left| I \right|=1\left| \begin{matrix} 1 & 0 \\ 0 & 0 \\\end{matrix} \right|-0\left| \begin{matrix} 0 & 0 \\ 0 & 1 \\\end{matrix} \right|+0\left| \begin{matrix} 0 & 1 \\ 0 & 0 \\\end{matrix} \right| \\ & \left| I \right|=1(1-0)-0(0-0)+0(0-0) \\ & \left| I \right|=1-0+0=1 \\\end{align}$