Given the matrix $M=\left( \begin{matrix} -2 & 0 & 4 \\ 0 & 1 & -6 \\ 5 & 6 & 3 \\\end{matrix} \right),$ find ${{M}^{T}}+2M$
$\left( \begin{matrix} -4 & 2 & 1 \\ 6 & 0 & 5 \\ 0 & 6 & 2 \\\end{matrix} \right)$
$\left( \begin{matrix} -6 & 0 & 13 \\ 0 & -3 & 18 \\ 14 & 18 & 9 \\\end{matrix} \right)$
$\left( \begin{matrix} 5 & 2 & 6 \\ 0 & 1 & 1 \\ 3 & 4 & -7 \\\end{matrix} \right)$
$\left( \begin{matrix} -4 & 0 & 8 \\ 0 & -2 & -16 \\ 10 & 12 & 6 \\\end{matrix} \right)$
\[\begin{align} & M=\left( \begin{matrix} -2 & 0 & 4 \\ 0 & 1 & -6 \\ 5 & 6 & 3 \\\end{matrix} \right) \\ & {{M}^{T}}=\left( \begin{matrix} -2 & 0 & 5 \\ 0 & 1 & 6 \\ 4 & -6 & 3 \\\end{matrix} \right),\text{ }2M=2\left( \begin{matrix} -2 & 0 & 4 \\ 0 & 1 & -6 \\ 5 & 6 & 3 \\\end{matrix} \right)=\left( \begin{matrix} -4 & 0 & 8 \\ 0 & 2 & -12 \\ 10 & 12 & 6 \\\end{matrix} \right) \\ & {{M}^{T}}+2M=\left( \begin{matrix} -2 & 0 & 5 \\ 0 & 1 & 6 \\ 4 & -6 & 3 \\\end{matrix} \right)+\left( \begin{matrix} -4 & 0 & 8 \\ 0 & 2 & -12 \\ 10 & 12 & 6 \\\end{matrix} \right)=\left( \begin{matrix} -6 & 0 & 13 \\ 0 & 3 & -6 \\ 14 & 6 & 9 \\\end{matrix} \right) \\\end{align}\]